MATH 4220 - Lec. 3

# Lecture 3

Vectors & Polar Forms

How can we take the square root of the imaginary unit? Consider the equivalent question of finding the complex number $$z$$ who, when multiplied by itself, returns $$i$$:$z^2=i$ We will write $$z$$ in terms of its real and imaginary components: $z=x+iy \implies (x+iy)^2=i$ and expand: $x^2-y^2+i~2xy=i$ Notice we now have an expression for $$i$$ of form $$a+ib$$, so we can see \begin{align}\Re[i]&=0=x^2-y^2\\\Im[i]&=1=2xy\end{align} which allows us to solve for $$x$$ and $$y$$: \begin{align}x&=\pm y\\ 2y^2&=1\\\implies y&=\pm\frac{\sqrt{2}}{2}\\x&=y\end{align}

And so we arrive at our solution The two square roots of $$i$$ visualized on the unit circle.: \begin{align}\sqrt{i}=z&=x+iy\\&=\boxed{\pm\frac{\sqrt{2}}{2}\left(1+i\right)}\end{align}

## Polar Coordinates

Working with complex numbers in Cartesian is tedious. We will discover that polar coordinates are a much more natural choice. How can we describe $$z$$ in terms of $$r$$ and $$\theta$$? In other words, how can we find:$z(r(x,y),\theta(x,y)) =~?$ Shown graphically:

Trigonometry makes this quite easy: \begin{align}r&=\sqrt{x^2+y^2}\\\theta&=\tan^{-1}\left(\frac{y}{x}\right)\end{align} Notice our expression for $$r$$ is equivalent to $$|z|$$, the modulusAlso called the magnitude of $$z$$. One may then expect that our expression for $$\theta$$ ought also be named, and indeed it is — the function $$\arg(z)=\theta$$ is called the argumentAlso called the phase of $$z$$.

Now we can express $$x$$ and $$y$$ in terms of $$r$$ and $$\theta$$:\begin{align}x&=r\cos\theta\\ y&=r\sin\theta\\\implies z&=x+iy=r\cos\theta+i~r\sin\theta\\ &=r\left[\cos\theta+i\sin\theta\right]\\ &=re^{i\theta}\end{align} Beauty.

Theorem: Euler's formula $e^{i\theta}=\cos\theta+i\sin\theta$ When taken as a function, the expression is sometimes denoted $$\mathrm{cis}~\theta$$, from "cosine plus i sine"

Definition. The sets $$\mathbb{E}$$ and $$\mathbb{O}$$ denote the even and odd naturals, respectively: \begin{align} \mathbb{E} &= \{n\in\mathbb{N}~|~(\exists k)[k\in\mathbb{N}\land n = 2k]\}\\ \mathbb{O} &= \mathbb{N}\backslash\mathbb{E} \end{align}

Proof. Using power series: \boxed{\begin{align}\mathbf{Recall.}\\\\ e^x &= \sum_{n=0}^{\infty}\frac{x^n}{n!} \\\\ \cos x &= \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n}}{2n!} \\\\ \sin x &= \sum_{n=0}^{\infty}(-1)^n\frac{x^{2n+1}}{(2n+1)!}~~~~~\\& \end{align}}

\begin{align} e^{i\theta}&=\sum_{n=0}^{\infty}\frac{(i\theta)^n}{n!} = \sum_{n=0}^{\infty}\frac{i^n\theta^n}{n!}\\ &= \sum_{n\in\mathbb{E}}\frac{i^n\theta^n}{n!}+\sum_{n\in\mathbb{O}}\frac{i^n\theta^n}{n!}\\ &= \sum_{m=0}^\infty\frac{i^{2m}\theta^{2m}}{2m!}+\sum_{m=0}^\infty\frac{i^{2m+1}\theta^{2m+1}}{(2m+1)!}\\ &= \sum_{m=0}^\infty\frac{(-1)^m\theta^{2m}}{2m!} + \sum_{m=0}^\infty\frac{i(-1)^m\theta^{2m+1}}{(2m+1)!}\\ &= \sum_{m=0}^\infty\frac{(-1)^m\theta^{2m}}{2m!} + i\sum_{m=0}^\infty\frac{(-1)^m\theta^{2m+1}}{(2m+1)!}\\ &= \cos\theta + i\sin\theta~~\square \end{align}

### Complex multiplication in polar form

Let us take two complex numbers $$z_1$$ and $$z_2$$ of the form $$z_k = r_ke^{i\theta_k}$$. Their product takes the form $z_1z_2=r_1r_2e^{i(\theta_1+\theta_2)}$

Two important observations can be made from this result. First, when multiplying complex numbers, the modulus of the product is equal to the product of the moduli of the multiplicands: $\left|\prod_kz_k\right|=\prod_k|z_k|$ Second, the argument of the product is equal to the sum of the arguments of the multiplicands: $\arg \prod_kz_k = \sum_k\arg z_k$

These properties make the multiplication of many complex numbers incredibly simple.

.